HOW SOLAR CELLS WORKS?

(adsbygoogle = window.adsbygoogle || []).push({});

HOW SOLAR CELLS WORKS? Solar cells, which largely are made from crystalline silicon work on the principle of Photoelectric Effect that this semiconductor exhibits. Silicon in its purest form- Intrinsic Silicon doped with a doping impurity to yield Extrinsic Silicon of desired characteristic (p-type or n-type Silicon). When p and n type silicon combine, they result in formation of potential barrier.

Working of Solar cells can thus be based on two crystalline structure:

  1. Intrinsic Silicon
  2. Extrinsic Silicon

Intrinsic Silicon:

            Silicon has some special chemical properties, especially in its crystalline form. An atom of silicon has 14 electrons, arranged in three different shells. The first two shells- which hold two and eight electrons respectively- are completely full. The outer shell, however, is only half full with just four electrons (Valence electrons). A silicon atom will always look for ways to fill up its last shell, and to do this, it will share electrons with four nearby atoms. It’s like each atom holds hands with its neighbors, except that in this case, each atom has four hands joined to four neighbors. That’s what forms the crystalline structure. The only problem is that pure crystalline silicon is a poor conductor of electricity because none of its electrons are free to move about, unlike the electrons in more optimum conductors like copper.

Extrinsic silicon:

            Extrinsic silicon in a solar cell has added impurity atoms purposefully mixed in with the silicon atoms, maybe one for every million silicon atoms. Phosphorous has five electrons in its outer shell. It bonds with its silicon neighbor atoms having valency of 4, but in a sense, the phosphorous has one electron that doesn’t have anyone to bond with. It doesn’t form part of a bond, but there is a positive proton in the phosphorous nucleus holding it in place. When energy is added to pure silicon, in the form of heat, it causes a few electrons to break free of their bonds and leave their atoms. A hole is left behind in each case. These electrons, called free carriers, then wander randomly around the crystalline lattice looking for another hole to fall into and carry an electrical current. In Phosphorous-doped Silicon, it takes a lot less energy to knock loose one of “extra” phosphorous electrons because they aren’t tied up in a bond with any neighboring atoms. As a result, most of these electrons break free, and release a lot more free carriers than in pure silicon. The process of adding impurities on purpose is called doping, and when doped with phosphorous, the resulting silicon is called N-type (“n” for negative) because of the prevalence of free electrons. N-type doped silicon is a much better conductor than pure silicon. The other part of a typical solar cell is doped with the element boron, which has only three electrons in its outer shell instead of four, to become P-type silicon. Instead of having free electrons, P-type (“p” for positive) has free openings and carries the opposite positive charge.

(adsbygoogle = window.adsbygoogle || []).push({});

Need any Project or any Help? Leave us a comment

Need any Project or any Help? Leave us a comment